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Abstract. The nonlinear, two-point boundary-value problem relevant to a 

particular controlled system is solved. First, quasilinearization techniques are used to 

replace the nonlinear system with one that is linear. Then, the method of particular 

solutions is used to solve the linear problem, and the procedure is employed iteratively. 

Three variations of this procedure are  presented, one converging to a family of 

solutions and two converging to a unique solution. 
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NGR-44-006-089. 
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is indebted to Professor Angelo Miele for suggesting the topic and stimulating 
discussion. 
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1. Introduction 

.'-T' In Ref. 1, Miele developed the method of particular solutions for solving the 
k ,  

linear, two-point boundary-value problem for both an uncontrolled system and a 

controlled system. He treated a system of order n, subjected to p initial conditions 

and q final conditions, with p + q = n for an uncontrolled system and p n, q 5 n for 

a controlled system. He proved that q + 1 particular solutions of the original, 

nonhomogeneous system satisfying the initial conditions but not the final conditions 

can be combined linearly so as to satisfy simultaneously the original, honhomogeneous 

system and the initial conditions, providing the sum of the constants of the linear 

combination is one. This relation and the q prescribed final conditions constitute 

a system of q 3- 1 linear algebraic equations in the q + 1 unknown constants. 

In Ref. 2, the method of particular solutions was used to solve the two-point 

boundary-value problem for several nonlinear, uncontrolled systems. First, 

quasilinearization techniques were used to replace each nonlinear system with a 

system linear in the perturbations about a nominal curve (see, for example, Refs. 

3 and 4). The method of particular solutions was applied to the linear system to 

obtain the perturbations leading to a new nominal curve; then, an iterative procedure 

was employed to converge to the exact solution. 

In this report, the meth'od of particular solutions is used to solve the two-point 

boundary value problem for a particular nonlinear, controlled system. A complete 

set of initial conditions and final conditions is prescribed. The object is to  find 

one of many possible control functions which allow one to satisfy the difterential 

system, the initial conditions, and the final conditions. 
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2 .  Control Problem - 

The nonlinear, controlled system considered here is described by the differential 

equations 

2 2 - y  = o ,  + u = o  

the initial conditions 

x(0) = y(0) = 0 

and the final conditions 

x(1) =y( l )  = 1 (3 1 

In these equations, the time t is the independent variable, x and y are the state variables, 

u is a control, and the dot denotes a derivative with respect to time. The problem is 

to  find one particular control u(t) which gives solutions x(t) and y(t) satisfying Eqs . 
(l), the initial conditions (2), and the final conditions (3). 



4 AAR- 5 1 

3 .  Solution Process 

In this section, several ways for finding a satisfactory control function u(t) are 

presented. The first step is to linearize Eqs . (1) about a prescribed nominal curve 

x,(t), y,(t), u*(t) to obtain the perturbation equations 

2 G -  2 y * 6 y + ( 2 - y ) * = 0  

6 9  - 6u + (9 - u)* = 0 

Here, the symbols 6x, v, 6U, denote the perturbations of x, y, u at a constant station t, 

that is, 

6x = x(t) - x*(t) 

Since the nominal curve is always chosen to  satisfy Eqs. (2)-(3), the initial conditions 

for the system (4) are 

h ( 0 )  = 6y(O) = o  

and the final conditions are 

b(1) = $(l) = o  
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Having linearized Eqs . (l), we apply the method of particular solutions. Since 

q + 1 = 3, three particular solutions are required and are  designated with the sub- 

scripts 1,2,3, respectively. These solutions are first obtained by integrating Eqs. 

(4) subject to (6) and three different control perturbations 6u(t) and then combined 

so  as to  satisfy the final conditions (7). Several ways to choose the control perturbations 

are shown below. 

Method A. The nominal curve is chosen to be 

x* = t ,  y* = t ,  u, = t  (8 1 

This curve does not satisfy the differential equations (l), but it satisfies the initial 

conditions (2) and the final conditions (3). As noted before, three particular solutions 

of the linear system (4) are needed for the perturbation functions, In the first 

integration, we employ the initial conditions 

6x1(0) = 6y1(0) = 0 (9) 

and the control perturbation 

6Ul = t ( l  - t) 
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to obtain the state variable perturbations 

In the second integration, we employ the initial conditions 

6 X 2 ( O )  = 6y2(0) = 0 

and the control perturbation 

2 
6u = t  (1 - t)  2 

to obtain the state variable perturbations 

In the third integration, we employ the initial conditions 

6 X 3 ( O )  = 6y3(0) = 0 

and the control perturbation 

3 6u3 = t (1 - t) 

to obtain the state variable perturbations 

6X3(t)? 6Y3(t) 

(15) 
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Next, we form the linear combinations 
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k = k l 6 x I + k  Enr + k  6x 
2 2  3 3  

6y = k  6y + k  (Ey + k  Sy 1 1  2 2  3 3  

6 u = k  6u + k  6u +k3ki3 1 1  2 2  

and inquire whether they can satisfy the differential equations (4), the initial conditions 

(6),and the final conditions (7). As shown in Ref. 1, the functions (18) satisfy (4) 

and (6) provided 

k + k  + k  = 1  1 2 3  

and (7) provided 

k16x1(1) + k 6x (1) + k36x3(1) = 0 2 2  

Equations (19)-(20) are a system of three algebraic equations which determine the 

constants kl, k2, k3. Once the perturbation functions a re  known, the approximate 

trajectory of the system is given by 

x = x, + SX 

Y = Yr, + fiY 

u = u, + 6u 
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and, in this way, the first iteration is completed. Next, the functions (21) are 

employed as the nominal functions for the second iteration, and the process is 

repeated. 

Computations were performed with an IBM 7040 computer, and theresults are 

shown in Figs. 1-3, in which n is the iteration number. The curve n = 0 is the 

nominal curve (8), the curve n = 1 is that obtained a€ter one iteration, and so on. 

The curve n = 4 is deleted because it lies so close to the curve n = 3 that the relative 

differences cannot be seen in the scale of Figs. 1-3. Convergence to a solution is 

rapid in that the modulus of the e r ror  functions 

-4 is less than 10 at every station t after five iterations. 

In the sixth iteration and subsequent iterations, the functions x, y, u continue 

to change at a small but approximately constant rate, while the magnitude of El and 

E remains about the same. In other words, Method A does not generate a unique 

solution but, for n 2 5, a family of solutions. In this connection, the curve n = 10 

is shown in Figs. 1-3. The nomniqueness is obvious if one examines Eqs . (5-3), 

(lo), (13), (16), (18-3), and (19). Clearly, a unique solution is possible if, and only 

if, 6u(t) + 0 as n .+a. However, the functions 6ul(t), b2(t), 6u (t) are identical for 

each iteration and their weighting coefficients k k k cannot all be small because 

of (19). 

2 

3 

1’ 2’ 3 
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Method B. This method is identical with Method A, except that the control 

perturbations are defined as 

2 6ul = t( l  - t)/n 

2 2 6uz = t (1 - t)/n 

3 2 
6u = t (1 - t)/n 3 

where n denotes the generic iteration. Since Eqs. (23) yield smaller control 

perturbations as successive iterations are performed, one must expect a unique 

solution. 

Computations were performed with an IBM 7040 computer. Convergence to 

-6 a solution is rapid in that the modulus of the e r ror  functions (22) is less than 10 

at every station t after five iterations. The sixth iteration and subsequent iterations 

produce increasingly smaller changes in the functions x, y, u, indicating convergence 

to a unique solution (see Figs. 4- 6). This unique solution is almost identical 

with the curve n = 3 of Figs. 1-3. 

Method C. This method is identical with Method A, except that the control 

perturbations are  defined as 

Since Eqs . (24) yield smaller control perturbations as successive iterations a re  

performed, one must expect a unique solution. 



Computations were performed 

solution is rapid in that the modulus 

10 

with an IBM 7040 computer, Convergence to a 

of the error  functions (22) is less than 10 -5 

at every station t after five iterations. The sixth iteration and subsequent iterations 

produce increasingly smaller changes in the functions x, y, u, indicating convergence 

to a unique solution (see Figs. 7-9). 

AAR-51 
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4 + Conclusions 

Two mathematical techniques , quasilinearization and the method of particular 

solutions , are combined to solve the nonlinear, two-point boundary-value problem 

relevant to a particular controlled system. Specifically, the nonlinearity of the 

problem is removed by quasilinearization, and the resulting linear, two-point boundary- 

value problem is solved by the method of particular solutions. 

Three different methods for finding a suitable control function a re  used. In all 

of these, a nominal curve not satisfying the differential equations but satisfying the 

boundary conditions is chosen. Then, a control perturbation is applied, and the state 

variable perturbations a re  found. 

In Method A, control perturbations independent of the iteration number are 

employed. In Method B, control perturbations inversely proportional to the square 

of the iteration number a re  used. In Method C, control perturbations proportional 

to the powers of the integral of the errors committed in the differential equations 

are employed. While Method A does not lead to a unique solution, Methods B and 

C do lead to a unique solution. Method B appears to be the best for the particular 

problem under cons ideration. 

In conclusion, the combination of quasilinearization with the method of particular 

solutions can be a powerful tool in solving nonlinear, two-point boundary-value problems 

relevant to controlled systems. Provided the initial guess used in the iteration procedure 

is chosen with discretion, convergence to a solution is quite rapid, and the accuracy of 

the solution is limited only by the integration step size and the integration technique 

employed. 
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Fig. 2 The function y(t). 



Fig. 3 The function u(t) . 
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Fig. 4 The function x(t). 
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Fig. 5 The function ytq. 
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Fig. 6 The function u(t). 



Fig. 7 The function x(t) . 

Fig. 8 The function y(t) . 
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